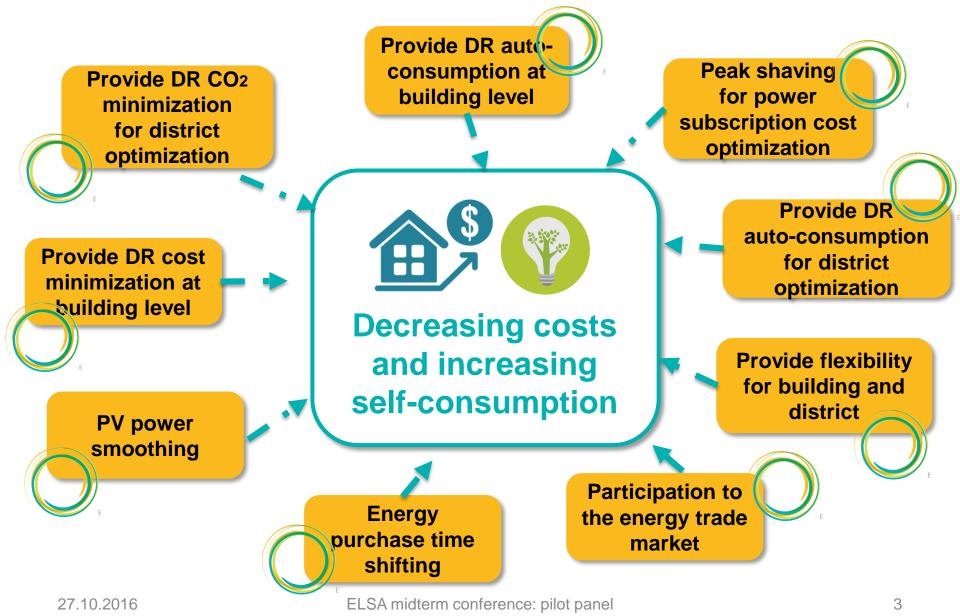
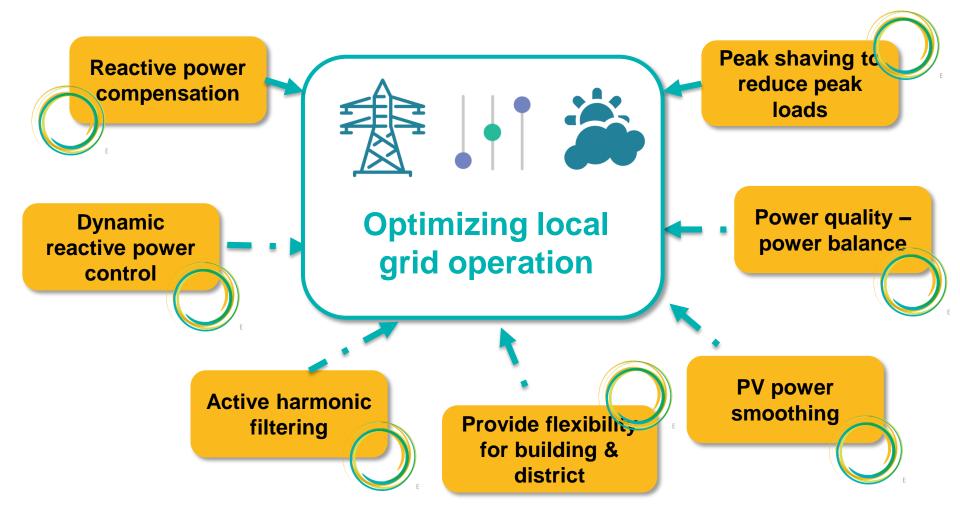
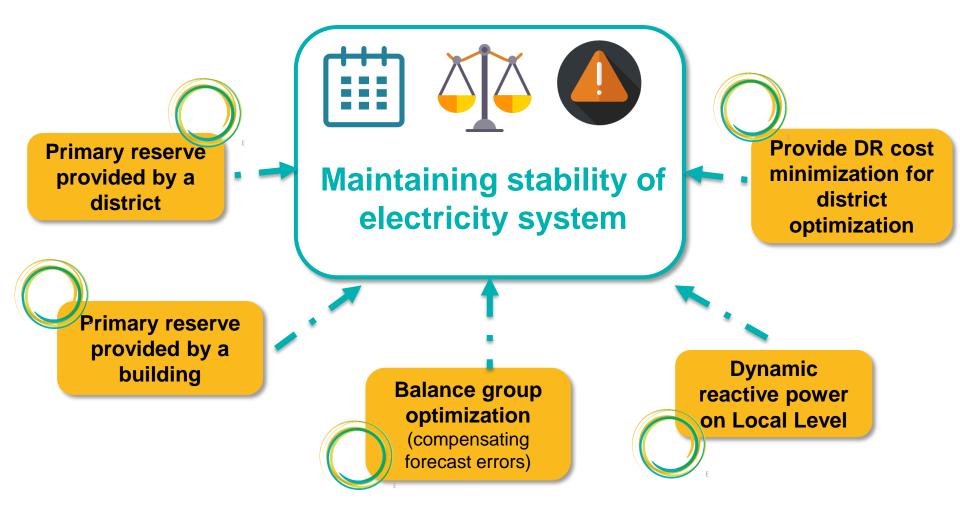


Pilot Panel: ELSA Use Cases

Presenter:Massimo Bertoncini, EngineeringModerator:Ludwig Karg, B.A.U.M. Consult GmbH


Panellists: Ella Etienne, Green Soluce Sarah O'Connell, UTRCI Massimo Cresta, ASM Terni Thomas Eberl, egrid Anica Berthold, RWTH Aachen Petar Mihaylov, Nissan Use cases: We need to Stack Services


Use cases for Building and District Level


Use cases for Local Grid Level

Use cases for Transmission Grid Level

Pilot Installations

Pilots resemble all important use cases for small and medium storage solutions.

ELSA Services for Europe

Provide DR auto-consumption for district optimization

Provide DR auto-consumption at building level

Provide flexibility for building and district

Peak shaving cons. to reduce peak loads in peak hour

Request and delivery of Peak Shaving service

District provides primary reserve

DSO manages reactive power compensation

ELSA midterm conference: pilot panel

ELSA Pilot Site Aachen

- A district represented by the multi-disciplinary research institution of RWTH Aachen University.
- Three buildings and a Wind Turbine equipped with a Battery to optimize the power consumption.

Representative: Anica Berthold, RWTH Aachen

E.ON Energy Research Center

goal	Optimize power consumption on the campus of the E.ON ERC
setting	 3 buildings (main building, test hall, sense building) small wind turbine
trial	 # Provide DR auto-consumption for district optimization # Provide DR cost minimization for district optimization # Provide DR CO₂ minimization for district optimization
challenges	 Aggregation of the flexibility Communication infrastructure Control algorithms

ELSA Pilot Site Terni

- 25% of the city's electricity demand covered by RES
- 240 kWp PV farm plus battery storage to supply district with office buildings and warehouses

Representative: Massimo Cresta, ASM Terni

goal	Mitigate and smooth the fluctuating power output generated by a PV farm to follow DSO demands.
setting	 District with office buildings and warehouses along a low voltage branch owned by ASM Terni Nearby plane field PV 240 kWp connected to low voltage Flexible loads: E-Vehicle charging spots Non flexible loads. buildings lightening and air conditioning Battery. 96 KWh, 18 / 72 kW charge / discharge
trial	 # Peak shaving for power subscription cost optimization # Providing primary reserve # Managing power quality # Reactive power control and compensation
challenges	 Consume energy where it is produced (km0 – cost effectiveness) Reduce disruptions in the low voltage network (quality of service) Increase the sustainability in the energy management (less impact)

ELSA Pilot Site Kempten i. Allgäu

- Existing residential area with six multi-family houses (81 apartments)
- solar panels on 3 houses plus district storage system for direct consumption

Representative: Thomas Eberl, egrid applications & consulting GmbH

City of Kempten i. Allgäu

goal	Maximize a district's auto-consumption while mitigating and smoothing the fluctuating power generated by roof top PV
setting	 37,1 kWp PV No flexible loads Battery in substation: 66 kWh, 18 / 72 kW max charge / discharge
trial	 # Increasing self-consumption # Providing primary reserve # PV-power smoothing # DSO manages the Reactive Power Compensation # Balance group optimization # Participation to energy trade market
challenges	 Legal restrictions in cooperation of owners and DSO Fitting battery system in substation building Safety level and users' anxiety

ELSA Pilot Site Gateshead College

- Skills Academy for Sustainable Manufacturing and Innovation (SASMI), a 5.700 m2 training centre
- photovoltaic roof top system with 50 kWp plus battery system
- energy management system connected to the existing building management system

Representative: Sarah O'Connell, UTRCI

Gateshead College Skills Academy for Sustainable Manufacturing and Innovation (SASMI)

goal	Optimise building flexibility to provide services to the grid Develop training to support deployment of distributed storage
setting	 Sensors, meters & BMS Flexible loads: HVAC, door curtain Non flexible loads: lighting, equipment, plug loads Battery: 48 kWh, 9 / 36 kW max charge / discharge
trial	 # Peak shaving # Energy purchase (load) time shifting # DR: Cost minimisation # DR: Auto consumption # DR: Flexibility
challenges	 Optimised co-ordination & scheduling of multiple sources Smart grid enabled ICT platform integration

ELSA Pilot Site Paris

- 10 floor office building in la Défense, an important business area of Paris
- Sustainable and innovative solutions at the core of the project

Representative: Ella Etienne, Green Soluce

27.10.2016

Ampere Building, Paris

goal	Proof potential of batteries for self-consumption and grid services
setting	 Currently in the final phase of construction by SOGEPROM
trial	 # Demand response to maximize auto-consumption at building level # Peak shaving for power subscription cost optimization on building and district level # Providing flexibility for building and district
challenges	 Satisfy the stringent safety and security specifications in critical office environment Optimise user comfort at all times Highlight benefits for a real estate investor

ELSA Pilot Site Barcelona

- 100 000 m2 manufacturing plant with an annual energy consumption of more than 100 000 MWh
- 300 kWp PV parking system plus 1000 kWh battery storage for optimisation of the factory lighting

Representative: Petar Mihaylov, Nissan

Nissan Barcelona Plant

goal	Optimise use of PV power for building lighting
setting	 Battery: 42 Nissan EV battery packs (1,000 kWh total capacity)
trial	 # Energy purchase time shifting (Arbitrage) to minimize the cost of the electricity consumption of part of the factory lighting # Peak shaving will be tested to lower the power subscription cost # PV power smooting will be tested targeting 0% loss of the Photovoltaic production # System will not respond to signals of external actors but apply charge/discharge algorithms in an autonomous way
challenges	 The regulation in Spain is not very clear regarding the use of battery storage. Possible penalties and fees.

Contact:

Ludwig Karg B.A.U.M. Consult GmbH I.karg@baumgroup.de

The project Energy Local Storage Advanced system (ELSA) receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646125.

